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It is seen from Fig. 6 that conditions (2.3) can be satisfied not only along the integral 
curves that define flows with a limit line but*a~,al~g some curves for which continu- 
ous solutions exist. Furthermore, utrlike in the case of inert gasla shock front may be ge- 
nerated at coordinate & ( 0. Flows with the shock wave reaching the nozzle center 
do not evidently obtain under real conditions. They correspond to flows in nozzles with 
wall discontinuities. 

The author thanks 0, S. Ryzhov for formulating the problem and for valuable discus- 
sions in the course of this work. 
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It is shown that solutions of the first boundary value problem for second order 
linear parabolic equation with two independent variables reduce in region o 
with weak convergence of its coefficients in LB (0) to the solution of the first 
boundary value problem for some limit equation. This means that ~lution of 
the “microscopic” problem of heat propagation in one-dimensional disperse 
medium can be approximated by the solution of the “macroscopic” problem. 

The basic problem of the theory of disperse media consists of the determina- 
tion of macroscopic properties of these by the known properties of their consti- 
tuents and by the macroscopic parameters which depend on the disperse medi- 
um structure. A strict ~~e~ti~l f~rnu~ti~ of this problem in a general 
form has not been so far achieved (see surveys [l, 21). Statistical methods bad 
been applied to the investigation of properties of disperse media [3 - 5-J. Ano- 
ther approach consists in the analysis of equations with discontinuous coeffici- 
ents that define disperse media at a “microscopic” level with the view to appro- 
ximating solutions of such equations by functions which satisfy equations whcwe 
coefficients are in a certain sense limiting and possess better differential pro- 
perties than the coefficients of input equations (see [S - 8)). This problemhas 
not yet been analyxed in a general form. Supplementary restrictions were im- 
posed in the considered cases on the structure of coefficients of input equations, 
as for example, the condition of periodicity [9, 103 or of other kind [S, 111. 
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The above mentioned macroscopic parameters that define a disperse medium 
are usually averaged over a small volume. 

In the present paper the microscopic parameters that define a disperse me- 
dium in region o are considered to be terms of sequences weakly convergent 
in L, (co) to some (generally smooth) functions which are taken as the macro- 
scopic characteristics of a disperse medium. For a one-dimensional medium 
this condition is sufficient for obtaining a uniform convergence of solutionsof 
a “microscopic” problem to that of a I’ macroscopic” one. Below we present 
the proof of this statement for the general parabolic second order equation 
with a single space variable. The method of [ll] is used for this. The first 
boundary value problem is considered, although a similar investigation can be 
applied to a number of other boundary conditions and, also, to the Cauchy prob- 
lem. 

1, 
I, 

Let function Urn (3, t). m = 1, 2,. . . satisfy in region Q = (2, t : 0 < 2 ( 
0 < t < 2’) the boundary value problem for the parabolic type equations 

Lrn (u) s - pm (ix, t) ut + (a” (z, t) u,), + bm (G t) ux + (1.1) 

cm (z, t) u = f” (z, t) 

u (z, 0) = r.g (x), u (0, t) = Ulrn @), u (4 t) = us” 0) (1.2) 

It is proved that on some specific assumptions urn (z, t) then to the limit u (2, t) 
when m + 00, if pm, I/u”, b”/u”, cm and f” weakly converge in L, (w) (see [X21) 
for m --t 00 to functions p, l/A, B, c and f, respectively, and functions uOm, uim 
and usm converge in the mean for m --+ oo to functions us, ui and us, respectively. 
( L, (a) denotes the space of measurable functions u (5, t) in o for which \r?&!& < 

oo.) The limit function u (2, t) defines the temperature distribution that &responds 
to the limit parabolic equation and boundary conditions of the form 

I (u) = - p (z, t) ut + (A (z, t) u,), + B (z, t) A (G t) %c + (l-3) 
c (G 0 u = f (z, t) 

24 (z, 0) = uo (4, u (0, t) = u, (t), l.4 (1, 0 = u2 0) (1.4) 

We assume that in 0 

(1.5) 

where constants M, a,, and a, are independent of m. 
In problems of the theory of disperse media the case in which coefficients of Eq. (1.1) 

and functions f” (z, t) are only piecewise continuous and piecewise smooth are of con- 
siderable interest. Here the problem ( 1. l), (1.2) is considered for arbitrary bounded mea- 
surable functions pm, urn, b”, cm and f”, that satisfy conditions (1.5) ; hence any 
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discontinuities that are interesting from the physical point of view are permitted for 
these functions. It is, therefore, necessary to consider in this connection the generalized 
solutions urn (x, f) of problem (1. I), (1.2). 

First, we consider the case, when the coefficients of Eq. (1. l), function fm and func- 
tions u,,“‘, ni”’ and us”’ satisfy the conditions of smoothness and of matching at Points 
(0, 0) and (0, 1) for which there exists a solution of problem (1. l), (1.2) whose deriva- 
tives appearing in Eq. (L 1) are continuous in 0 ( 0 denotes closing of the set w ) (see, 
e. g, [13] and Sect, 3 in [14]), Then, using the obtained results, we consider the case of 
discontinuous coefficients in Eq. (1.1) which is of the greatest interest in the theory of 
disperse media. 

2. Let p (s, t), pt (2, t), A (x, t), B (5, t), c k, t> and f 6~ t) be bounded 
measurable functions in o ; u. (z) be a bounded measurable function along segment 

IO, 21 : ul (t) and us (t) be bounded and continuous for 0 ( 1 < T, p > % > 0 
and A > a2 > 0 wit31 a0 and as constant. 

Definition. Function u (5, t) which is bcamded in o and continuous in G for 
t > 0 is called the generalized solution of problem (1.3), (1.4), if Us, E L, (o), 
~b (0, t) = u1 (t) and u (I, t) = us (t) for t > 0 , and if for any infinitely differ- 
entiable in 0 function cp (2, t) such that cp (z, T) = 0, cp (0, t) = 0 and cP(Z, t)= 

0 the integral identity 
s [bP),u - hccp, + BAu,cp + cucp - fq] dz dt + (2.1) 
0 

SP(& O>rp(& 0)uodz =o 
d 

is satisfied. 
T he ore m 1. If the generalized derivatives Ai and @A)= are bounded in 0 , then 

the generalized solution u (3, tj of problem (1.3), (1.4) is unique. 
Proof. Let us assume the existence of two generalized solutions u1 (2, f) and 

us (z, 8) of problem (1.3), (1.4). and prove that in o u1 5 us . The remainder ui - 

u, = u satisfies the integral identity 

i [(P(P), v - Av,cp, + BAv,cp -t WI kc dt = 0 (2.2) 

It can be readily sho& by Passing to limit that the inte.graf identity (2.2) is also valid 
for any function ‘p (z, tf such that q, E Ls (o), (pr E Ls (a), qt E b (~9, cp (5, t) = 0, 
cp (0, t) = 0 and ‘p (I, t) =I 0. We substitute into (2.2) the function defined by eqnal- 
ities 

for ‘p (I, 0. The positive constants a and T1 will be cho&n later. We have 

s 
[vp,Vp - vsp + uv@ - Av,?#, + BAv,lt, + ~$1 eat dx dt = 0 (2.3) 

Co 

We transform individual terms of equality (2.3) by integration by parts, and obtain 
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s e=‘BAv_Jz dx dt = - 
s 

e% [BA$, + (BA),g].ds dt (2.5) 
u) 0 

Taking into accent formulas (2.4) and (2.5) and using the Cauchy-Buniakowski and the 
elementary inequality 2ab < eZ + e-lbs , for the estimates of integrals in equality 
(2.3), we obtain 

IS 
[pt + cp + c - (BA),] e‘% dx dt I\< 

0 

(KI + aKa) e aT,($v2dxdt)lil(SIpadxdt)ll’g 

0 (D 

C e + (Kl + aK4’ e2aT, Tls 

e IS VI dx dt 

(D 

IS e”BAvg, dx dt < el (v) + 
I 

1;~) = 5 q$eat dz dt 

where e is an arbitrary positive constant and constants K1, KI and K, are independent 
of e, Tr and a. Taking into account these estimates, from Eq. (2.3) we conclude that 

1 

S[ 
pvr + + AWxa + + Atqza I 

eat dx dt + 
s 

-?j- A (2, 0) $,a dx < (2.6) 
(D 0 

s+ (K1+aKa)a 
e 

yypTa I(~)+ Ka 
7 I NJ 

We set e = a,,/4 and select a > a-r, (sup o 1 At 1 + 28-1 K,), and Tr so small that 
1 

2 a,~ > (KI + aKa)s e-lT&*Ts 

Then it follows from (3.6) that I (II) < 0, and, consequently, u 3 0 in o , when 0 < t < 
TI. We prove in the same manner that u s 0 for T, < t < 2T,, . . ., k Tl < f < T, 

where k is equal to the integral part of T/T,. The theorem is proved. 
Note that the theorem of uniqueness of the generalized solution u (z, t) and that of 

existence of a smooth solution of problem (1.3), (1.4). proved in [13, 143 imply that when 
the coefficients of Eq. (1.3), function f (Z, t) and the functions in conditions (1.4) are 
reasonably smooth and satisfy the conditions of merging at points (0, 0) and (0, Z), 
the generalized solution of problem (1.3) (1.4) is a function that has in Z continuous 
derivatives ut, u, and u,. 

8, Let us consider the case of reasonably smooth functions pm, a”‘, b*, cm, f” 
and uom, uIm, us”. 

Theorem 2. Let urn (z, t) be the solution of problem (1. l), (1.2) , whose deri- 
vatrves utm, u, m and uz are continuous in 0. We assume that conditions (1.5) and 
(1.6) are satisfied and that for m --t 00 functions pm, ptm, I/am, b”/a”, cmand f” 
weakly converge in La (0) to functions p, pt, i/A, B, c and f; respectively; that 
functions pm (z, 0) weakly converge in L, (0, I) to functioh p (5, 0) ; uom(Z) con- 
vergesin norm L, (0, I!) to function u. (z), and that %m (t) and ulm (t) converge in 
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norm L, (0, 2’) to functions u1 ft) and ua (t) , respectively. We assume that AI and 
@A), are bounded in 0. Then for m+ co solutions urn (z, t) of problem (1.1). (1.3) 
uniformly converge in og = {z, t : O<a:<Z, 6< t(T}forany S>O tothe 
generalized solution u (5, t) of problem (1.3) (1.4). 

P roof. According to the principle of maximum (see [13]) 

I urn (G t) I d Cl (3.1) 

where constant cr is independent of m. We denote by wm (x, t) the function that satisfies 

in o the condition 
(0 (5, t) wJ2 = 0; w (0, t) = z&1* (t), .w (1, t) = Unm (t) 

It is evident that 
wm (2, t) = ulm (t) + qm (5, 1) [q” (I, Ql-1 [us* (t) - Ulm (t)l 

q’” (x, t) = i [a”’ (s, t)]-’ ds 

0 

Functions wm, wtm and wxm are by virtue of conditions (1.5) and (1.6) obviously uni- 

formly bounded in o with respect to m. 

To estimate uzsm in norm L, (0) we consider functions urn = um - em. Obviously 
Y”’ (0, t) = 0 and urn (1, t) = 0. We multiply Eq. (1.1) by urn and integrate it over 

region o. Transforming individual terms of the obtained equality by integration by parts, 
we obtain 

s 
pmutmvm dx dt = 

S[ 

1 
- 2 ptm (urn)’ + (pm wm)*. urn 1 dx dt + (3.2) 

0 0 
1 

S[ 1 
2 pm (2, t) (24” (x, t))* -k 2 P” @, 0) born (I))a] &IT - 

0 
1 

s [pm (5, r) u’” (5, r) wm (I, T) -P” (xv 0) ~0”’ (4 w’” (2, (91 dx 
0 

By virtue of estimate (3.1) and assumptions (1.3) and (1.6) about functions pm, am, 

uomr u, m and %m all integrals in the right-hand part of equality (3.2) are bounded by 

a constant independent of m. Furthermore 

s (amu, m)r Urn dx dt = 
s 

[- am (u,“)’ f amu,“wxm]dx dt 

co (D 

Thus we obtain 

s 
am (,zm)s dx dt - s [amuzw,m + bmuxmwm] dx dt = Bm 

lo 0 

where Bm are bamded by a constant independent of m. Using the Cauchy-Buniakowski 
inequality and the elementary inequality 2ab < eas + a-lbs , for the estimate of the se- 
cond integral in equality (3.3), we obtain that 

s 
am (~,“)a dx dt < C% (3.4) 

0 

where constant ca is independent of m 

Let us consider equation 

L” (v”) f Lm (r?) - Lm (wm) = fm - Pmwtm + bmwxm + c”zo” 3 Fm (x, t) 
(3.5) 
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which is satisfied by function vm . By virtue of assumptions (1.5) and (1.6) functions 
P (s, t) are u~formly bounded with respect to m. We ~bs~~te in this equation the 
independent variables of the form 

lf==t 
q” h, t) 

, y = q” (2, t) 
E mm (r, t) 

As the consequence of this substitution of variables region 0 becomes B = {s, 2 : 0 < 
B < 1, 0 < 1: < T) and Eq. (3.5) becomes 

- p”v,” - pmQ),mvum + urn (fDJcrn)2 vmm + bm@~mvum + cmUm=Fm (3.6) 

We introduce the notations 

Qs = I& z : 0 < Y < 1, 6 < Z < T}, 8 = const > 0 

where y = const, 0 < y < 1, and D is a region in space (Y, z). To estimate uum we 
apply to Eq. (3.6) with conditions um (0, t) = 0 and urn (I, t) = 0 Theorem 3 of 1151, 
in accordance with which 

~~ffl~+uv*~~~~~ (3.7) 

where constants Y and ca are independent of m (but may depend on 8). 
It follows from estimate (3. ‘7) that the set of functions {urn} and {qm (I, t) amvxrn} 

are uniformly bounded and satisfy Holder condition with exponent y/2 with respect to 
variables p and T in the region Qs with the Holder constant independent of m. Since 
the derivatives of qrn (2, t) and tpm (x, t} with respect to zc and t are uniformly bounded 
with respect to m and qm (5, f) >, a, = con& > 0, hence the sets {P} and {am uXm} are 
uniformly bounded and satisfy the Holder condition with exponent y/2 with respect to 
variables G and t in any region os with the Holder constant independent of m. Sets 
{urn) and {amum} have the same property, because Vrm = urn - wm and wm are uniformly 
bound with respect to m, while the derivatives of am wXm with respect to t and z are 
bounded with respect to m in o. Consequently the sets of functions {u”)and (am r+=} 
are, according to the Arzeti theorem, compact in the sense of uniform convergence in 
any region us with 8 = const > 0. 

Using the diagonal process we eliminate the sequence of numbers mk such that for 

mk + 00 functions a mk and a mk uxmk converge in o to functions u (z, t) and V (z, t)t 
and the convergence is unifo~ in any region o8 and the sequence Gmk weakly conver- 
ges in La (0) to u, (2, d). 

Note that 
Um 

* 5 &- (a”u,“) (3.3) 

since for mk + (x) a mk Urmk uniformly converge in o6 to V and arnLlxm are uniformly 
bounded in norm Ls (0) with respect to m , while l/am (z, t) weakly converges in Ls (0) 

to I/A (5, t), hence, passing to limit in equality (3.8) with respect to the chosen sequence 
mk% we obtain the equality of limits u, = V/A which are weak in Lp (a). Since u, E 
Ls (0)~ hence V = -4% E La (0). Multiplying Eq. (1.1) by the infinitely differentiable 
function cp (5, r)such that cp (5, T) = 0, a, (0, t) = 0 and g, (I, t) = 0, integrating the 
obtained equality over region o ,and transforming its terms by integration by parts, we 
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obtain that the integral identity 

s 
[(Pep), - amuxm~z + $. amuxmcp + ~~24’~~ - f”q~] dx dt + (3.9) 

0 1 

s Pm (2, 0) Ugrn (2) rp (x, 0) dx = 0 

0 

satisfies unr (z, t). 
We now pass to limit in the integral identity (3.9) with respect to the previously se- 

lected sequence mk. In doing so we must take into account 

--V)cpdxdtI+I \ VT (g-B)dxdtl+ 

9 

(3.10) 

v/g [wjw8 (b”‘u,“cp - VBcp)2dx dt 1”’ 

It will be seen that the left-hand part of inequality (3.10) tends to zero when mk --f CO, 

because by virtue of assumptions (1.5) and estimate (3.4) the last integral in its right- 

hand part does not exceed J6K4, where K, is independent of &, the first integral in 
the right-hand part tends to zero for fixed 6 and mk -+ 00 owing to the uniform conver- 
gence of amuxm in oh to V , and the second integral tends to zero for fixed 6 owing to 
the weak convergence in La (0) of function P/am to B. 

The proof that for mk -+ C-J 

I 
’ amuxmcpxdx dt - 5 Vvxdx dt = 1 Auxcp,dx dt 

0 0 0 
is similar. 

We thus obtain that the limit function u (5, t) satisfies the integral identity (2.1). 

Furthermore, since u (5, t) is bounded in o and continuous in G for t > 0, hence 

u (9, t) = Ul (t)? u (h t) = % 01, u, E L, (o), 

and by definition u (x, t) is the general solution of problem (1.3), (1.4). In accordance 

with Theorem 1 the solution of problem (1. l), (1.4) is unique. Hence the complete se- 

quence urn (x, t) converges for m + CO to function u (x, t), and the convergence in os 

is uniform for 6 = const > 0. The theorem is proved. 

4, Let us consider the case of discontinuous coefficients and functions f” in Eq. (1.1). 
For this it is necessary to examine the generalized solutions of problem (1.1), (1.2). We 
assume that functions pm, am, bm, cm and f”’ are measurable in o and that u,,~ (z), 

ulrn (t) and u2”’ (r) are measurable along segments [0, 21 and [0, T] , respectively, 
and that conditions (1.5) and (1.6) are satisfied. 

The generalized solution of problem (1. l), (1.2) is taken to be the function urn (5, t) 
bounded in o and continuous in 0 for t \ 

t) = uam (t) and 1.4~~ 
/O such ihat urn (0, t) = ulm (t), urn (I, 

belong to L, (co) , and for any infinitely differentiable function 
cp (5, t) with conditions cp (2, T) = 0, cp (0, t) = 0 and cp (I, t) = 0 the integ- 

ral identity (3.9) is satisfied. 
It is proved below that the generalized solution urn (5, t) of problem (1. l), (1.2) exists 
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when conditions (1.5) and (1.6) are satisfied. If it is assumed that derivatives utm and 
b,“’ exist and are bounded in 0, then it follows from Theorem 1 that the generalized 
solution u”’ (z, t) of problem ( 1. l), (1.2) is unique. This restriction is subsequently 
disregarded. 

Theorem 3. Let u”’ (z, t) be the generalized solution of problem (1. l), (1.2) 
and let the assumptions formulated in Theorem 2 with respect to the coefficients of Eq. 
(1.1) and to functions p, u,,~, ym, nZm, At and @A), be satisfied. Then for 
m + 00 the generalized solution urn (z, r) of problem (1. l), (1.2) converges in 0, 
and the convergence is uniform in ws for 6 = const > 0, to the generalized solution 
u (z, t) of problem (1.3) (1.4). 

P r 0 0 f . We approximate coefficients pm, am, bm, cm and function f” by infinitely 
differentiable in o functions pm+, urn**, VV, c%n and fm9m with n=i,2,. ., such that 
for n --, ~0 these functions converge in L, (co) to functions pm, cm, bm, cm and F, 
with pm,* (5, 0) converging in .Ls (0, I) to pm (2, 0) Then we approximate functions 
uom, urm and usm by infinitely differentiable functions u$%*, Ul%n and US?” which 
for n --, 00 converge in Ls (0, I) and L, (0, 2’) , respectively, to functions uO*, h* 
and u.,m. The above approximations are chosen so that for any m and n conditions 
(1.5) and (1.6) with constants M, cc0 and a, independent of m and n are satisfied by 

P *,n, am?, bm?, cmtn, fv, tp,n, ulw and uzmln . It is also assumed that all 
new coefficients pmP, a*P, bman cm+ and functions f%n, uo*F, ul%n and uam,n sa- 
tisfy for any n , the conditions of merging at points (0, 0) and (0, Z), which ensure the 
existence in 0 of solution umjn (3, t) of the boundary value problem 

- pmln ut + (a%n U& + bm? u, + cmsn u = fm*” 

u (z, 0) = uom,*, u (0, t) = TV, u (I, t) = mmtn 

whose derivatives ut, u, and u, are continuous in i3 . 
It is seen that estimates (3.1),(3.4) and (3.7) are valid for functions umln (x, t) with 

constants cl, ca and cs independent of m and n. Solutions umsn (5, t) satisfy the integral 
identity 

s 
[(pm* n(p)tum* n - am* “u,~B n(px + bm* nuxm~ nqx + 

(0 
(4. I) 

I 

cm *“umyncp - fms “cp] dz dt + S pm* n (2, 0) u,,“* “:(a~) cp (2, 0) dz = 0 

for any infinitely differentiable function (P:z, t) such that ‘p (5, T) = 0, cp (0, t) = 0 
and cp (2, t) = 0. 

It follows from estimates (3. l), (3.4) and (3. 7) that for a fixed m it is possible to select 
such sequence nk + 00 that umSnk --, um in o and the convergence isuniform in o6 with 
6 = con& > 0, while uz”k +. U: weakly converges in L, (a). Taking into account 
that pmP, a*P, bmtn, cmvn and fmpn converge in norm Ls (0) and pmln (5, 0) and 
mm,n (I) converge in norm Ls (0, I) for n + 00, and passing to limit in the integral 
identity (4.1) for nk --, 00 , we obyn that the limit function urn (5, t) is the general- 
ized solution of problem (1.1). (1.2). By passing to limit we find that estimates (3.1) 
and (3.4) are valid for functions um (5, t) and that the sets {urn (5, t;) and {am (5, 
t) urn (3, t)) are uniformly bounded and equicontinuous in os for ij=const > 0. Hence a 
sequence can be found such that u*k converges to u (z, t) in o and uniformly in m8, $ 
weakly converges in L, (0) to s, and amk u,” k uniformly converges in os to V = Au, 
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Passing to limit for % -+ 00 in the integral identity (3.9) as in the proof of Theorem 
2, we conclude that u (x, if is the generalized solution of problem (1.3), (1.4). Owing 
to the uniqueness of the generalized solution of this problem, the complete sequence 
urn (2, t) converges for m -+ 00 to u (2, t). The theorem is proved. 

Note that the theorems similar to Theorems 2 and 3 can be proved in the case when 
conditions of the form 

2-5 (g, 0) = ltOrn (& am r& I*x=o = Urrn (t), a%, 1 x=* = us” (t) 

are substituted for (1.2). The first boundary value problem with boundary conditions of 
the form 

r.5 IWW) = Qrn (0, n Ix=@&) = usm (t) 

or the boundary value problem with boundary condition of the form 

a*%! IX+*(t) = UIrn (Q, amu* /2+(f) = Usrn (t) 

and initial condition u (x, 0) = u,,‘” (8) can be investigated in region o’ = (5, d : 

j3, (t) < 2 c Bs ($1, 0 c t ( TI * 
The methods used here are entirely applioable for the investigation of the Cauchy 

problem for Eq. (1.1) in region (x, t : - oo(s(oo,O(t<T)withinitial 
condition u (3, 0) = uom (s). 
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The optimization problem is considered for a partial differential equation of 
elliptic type, The boundary of the domain in which the equation is given em- 
erges as the control function and is to be determined from the condition of the 
extremum of the integral of the solution of the boundary value problem. Seek- 
ing the extremals is reduced to solving a variational problem without differen- 
tial constraints. Necessary conditions for optimality are obtained, and shapes 
of elastic bars possessing the maximum stiffness under torsion are found with 
their aid, 

1. Formulation of the optimirrtfon problem and aliminrtion 
of the differentirl conrtrrint, We consider a boundary value problem forthe 
partial differential equation 

The coefficients a, b, c of (1.1) are assumed given functions of the variables 2, y, 
and m > 0 is a given constant, I? is the boundary of a simply connected domain D. 

Let us formulate the following optimization problem. Determine the smooth closed 
line I’ satisfying the isoperimetric condition of the constant area of the domain D 

ss axay = s 
D 

(1.3) 

and such that a maximum of the integral functional 


